Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.121
1.
Klin Onkol ; 38(2): 118-125, 2024.
Article En | MEDLINE | ID: mdl-38697820

BACKGROUNDS: Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a substantial therapeutic procedure for the treatment of a wide spectrum of severe diseases. Despite advancements in treatment and supportive care, alloHSCT still carries a considerable mortality risk, primarily caused by graft-versus-host disease (GvHD). Our retrospective analysis aimed to identify the factors influencing overall survival and GvHD development in HLA-identical sibling alloHSCT. We have analyzed patients' and donors' age, AB0 compatibility, recipient-donor gender match, stem cell source, time from the diagnosis to alloHSCT, conditioning regimen type, GvHD prophylaxis, and relapse. PATIENTS AND METHODS: Our study included 96 patients (54 male, 42 female) who underwent HLA-identical sibling alloHSCT. The median follow-up was 64.5 months (range 1-218 months), and the median age of both recipients and donors was 34 years. Malignant hematological diseases were the most common indications for alloHSCT. RESULTS: GvHD and its complications accounted for the highest number of deaths (N = 24; 46.2%), followed by relapse (N = 18; 34.6%). Acute GvHD developed in 30 patients (31.3%), while chronic GvHD occurred in 25 patients (26.0%), resulting in a total of 45 patients (46.9%) experiencing GvHD. Male recipients with female donors had significantly worse overall survival compared to other patients (P = 0.01; HR = 2.33). Overall survival was better in patients transplanted within 1 year from the diagnosis compared to those transplanted after 1 year (P = 0.03; HR = 1.93). No factor reached statistical significance regarding the impact on acute GvHD, chronic GvHD, or overall GvHD. CONCLUSION: We confirmed that sex mismatch, specifically in the case of a female donor and a male recipient, significantly negatively affects overall survival after alloHSCT. Additionally, overall survival is significantly shorter when the interval between the diagnosis and alloHSCT exceeds one year.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Transplantation, Homologous , Humans , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/mortality , Male , Female , Adult , Retrospective Studies , Young Adult , Middle Aged , Transplantation Conditioning , Adolescent
2.
Gastroenterol Clin North Am ; 53(2): 281-288, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719378

The traditional procedure for multivisceral transplant (MVT) is to transplant the stomach, pancreas, intestine, and liver en bloc. During surgery, the native spleen is routinely removed from the recipient, and it usually creates more space in the abdomen to insert the allogeneic graft. Thus, recipients often become asplenic after MVT. Considering all of the risks and benefits, we advocate that temporary transplant of the donor spleen could be the best option for MVT recipients; it could potentially reduce the rate of intestinal allograft rejection without increasing the risk for graft-versus-host disease.


Intestines , Spleen , Humans , Intestines/transplantation , Spleen/transplantation , Graft vs Host Disease/prevention & control , Graft vs Host Disease/etiology , Graft Rejection/prevention & control , Organ Transplantation/methods , Pancreas Transplantation/methods
3.
Hematology ; 29(1): 2347673, 2024 Dec.
Article En | MEDLINE | ID: mdl-38712914

The ability to perform hematopoietic cell transplant across major histocompatibility complex barriers can dramatically increase the availability of donors and allow more patients across the world to pursue curative transplant procedures for underlying hematologic disorders. Early attempts at haploidentical transplantation using broadly reactive T-cell depletion approaches were compromised by graft rejection, graft-versus-host disease and prolonged immune deficiency. The evolution of haploidentical transplantation focused on expanding transplanted hematopoietic progenitors as well as using less broadly reactive T-cell depletion. Significant outcome improvements were identified with technology advances allowing selective depletion of donor allospecific T cells, initially ex-vivo with evolution to its current in-vivo approach with the infusion of the highly immunosuppressive chemotherapy agent, cyclophosphamide after transplantation procedure. Current approaches are facile and portable, allowing expansion of allogeneic hematopoietic cell transplantation for patients across the world, including previously underserved populations.


Hematopoietic Stem Cell Transplantation , Transplantation, Haploidentical , Humans , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Haploidentical/methods , Graft vs Host Disease/prevention & control , Graft vs Host Disease/etiology , Hematopoietic Stem Cells/cytology
4.
Front Immunol ; 15: 1384640, 2024.
Article En | MEDLINE | ID: mdl-38720904

Background: For children with severe aplastic anemia, if the first immunosuppressive therapy (IST) fails, it is not recommended to choose a second IST. Therefore, for patients without matched sibling donor (MSD) and matched unrelated donor (MUD), haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) can be chosen as a salvage treatment. This article aims to explore the comparison between upfront Haplo-HSCT and salvage Haplo-HSCT after IST. Methods: 29 patients received salvage Haplo-HSCT, and 50 patients received upfront Haplo-HSCT. The two groups received Bu (Busulfan, 3.2mg/kg/d*2d on days -9 to-8), CY (Cyclophosphamide, 60mg/kg/d*2d on days -4 to-3), Flu (fludarabine, 40mg/m2/d*5d on days -9 to -5) and rabbit ATG (Anti-thymocyte globulin, total dose 10mg/kg divided into days -4 to -2). Results: The OS of the salvage Haplo-HSCT group showed no difference to the upfront Haplo-HSCT group (80.2 ± 8.0% vs. 88.7 ± 4.8%, p=0.37). The FFS of the salvage Haplo-HSCT group also showed no difference to the frontline Haplo-HSCT group (75 ± 8.2% vs. 84.9 ± 5.3%, p=0.27). There was no significant difference in the incidence of other complications after transplantation between the two groups, except for thrombotic microangiopathy (TMA). In the grouping analysis by graft source, the incidence of II-IV aGVHD in patients using PBSC ± BM+UCB was lower than that in the PBSC ± BM group (p=0.010). Conclusion: Upfront Haplo-HSCT and salvage Haplo-HSCT after IST in children with acquired severe aplastic anemia have similar survival outcomes. However, the risk of TMA increases after salvage Haplo-HSCT. This article provides some reference value for the treatment selection of patients. In addition, co-transplantation of umbilical cord blood may reduce the incidence of GVHD.


Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Salvage Therapy , Transplantation, Haploidentical , Humans , Anemia, Aplastic/therapy , Anemia, Aplastic/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Male , Female , Child , Child, Preschool , Salvage Therapy/methods , Adolescent , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Immunosuppressive Agents/therapeutic use , Transplantation Conditioning/methods , Infant , Treatment Outcome , Immunosuppression Therapy/methods
5.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 249-256, 2024 Mar 14.
Article Zh | MEDLINE | ID: mdl-38716596

Objective: To analyze the efficacy of allo-HSCT with total body irradiation (TBI) and chemotherapy alone in the treatment of adult ALL and to explore the factors affecting prognosis. Methods: The clinical data of 95 adult patients with ALL who underwent allo-HSCT from January 2015 to August 2022 were included. According to the conditioning regimen, the patients were divided into two groups: the TBI plus cyclophosphamide (TBI/Cy) group (n=53) and the busulfan plus cyclophosphamide (Bu/Cy) group (n=42). Hematopoietic reconstitution after transplantation, GVHD, transplantation-related complications, relapse rate (RR), non-relapse mortality (NRM), OS, and LFS were compared, and the factors related to prognosis were analyzed. Results: The median time of neutrophil engraftment was 14 (10-25) days in the TBI/Cy group and 14 (10-24) days in the Bu/Cy group (P=0.106). The median time of megakaryocyte engraftment was 17 (10-42) days in the TBI/Cy group and 19 (11-42) days in the Bu/Cy group (P=0.488). The incidence of grade Ⅱ-Ⅳ acute GVHD (aGVHD) in the TBI/Cy and Bu/Cy groups was 41.5% and 35.7%, respectively (P=0.565). The incidence of grade Ⅲ-Ⅳ aGVHD in these two groups was 24.5% and 4.8%, respectively (P=0.009). The incidence of severe chronic GVHD in the two groups was 16.7% and 13.5%, respectively (P=0.689). The incidence of cytomegalovirus infection, Epstein-Barr virus infection, severe infection, and hemorrhagic cystitis in the two groups was 41.5% and 35.7% (P=0.565), 34.0% and 35.7% (P=0.859), 43.4% and 33.3% (P=0.318), and 20.8% and 50.0% (P=0.003), respectively. The median follow-up time was 37.1 months and 53.3 months in the TBI/Cy and Bu/Cy groups, respectively. The 2-year cumulative RR was 17.0% in the TBI/Cy group and 42.9% in the Bu/Cy group (P=0.017). The 2-year cumulative NRM was 24.5% and 7.1%, respectively (P=0.120). The 2-year LFS was 58.5% and 50.0%, respectively (P=0.466). The 2-year OS rate was 69.8% and 64.3%, respectively (P=0.697). In the multivariate analysis, the conditioning regimen containing TBI was a protective factor for relapse after transplantation (HR=0.304, 95% CI 0.135-0.688, P=0.004), whereas the effect on NRM was not significant (HR=1.393, 95% CI 0.355-5.462, P=0.634). Infection was an independent risk factor for OS after allo-HSCT in adult patients with ALL. Conclusion: allo-HSCT based on TBI conditioning regimen had lower relapse rate and lower incidence of hemorrhagic cystitis for adult ALL, compared with chemotherapy regimen. While the incidence o grade Ⅲ/Ⅳ aGVHD was hgher in TBI conditioning regimen than that in chemotherapy regimen.


Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transplantation Conditioning , Transplantation, Homologous , Whole-Body Irradiation , Humans , Hematopoietic Stem Cell Transplantation/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Transplantation Conditioning/methods , Prognosis , Adult , Survival Rate , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Cyclophosphamide/administration & dosage , Male , Female , Middle Aged
6.
Blood Cancer J ; 14(1): 76, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697960

Second allogeneic stem cell transplantation (alloSCT2) is among the most effective treatments for acute myeloid leukemia (AML) relapse after first alloSCT (alloSCT1). Long-term EBMT registry data were used to provide large scale, up-to-date outcome results and to identify factors for improved outcome. Among 1540 recipients of alloSCT2, increasing age, better disease control and performance status before alloSCT2, more use of alternative donors and higher conditioning intensity represented important trends over time. Between the first (2000-2004) and last (2015-2019) period, two-year overall and leukemia-free survival (OS/LFS) increased considerably (OS: 22.5-35%, LFS: 14.5-24.5%). Cumulative relapse incidence (RI) decreased from 64% to 50.7%, whereas graft-versus-host disease and non-relapse mortality (NRM) remained unchanged. In multivariable analysis, later period of alloSCT2 was associated with improved OS/LFS (HR = 0.47/0.53) and reduced RI (HR = 0.44). Beyond, remission duration, disease stage and patient performance score were factors for OS, LFS, RI, and NRM. Myeloablative conditioning for alloSCT2 decreased RI without increasing NRM, leading to improved OS/LFS. Haploidentical or unrelated donors and older age were associated with higher NRM and inferior OS. In summary, outcome after alloSCT2 has continuously improved over the last two decades despite increasing patient age. The identified factors provide clues for the optimized implementation of alloSCT2.


Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Registries , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Middle Aged , Male , Female , Adult , Hematopoietic Stem Cell Transplantation/methods , Aged , Young Adult , Adolescent , Transplantation, Homologous , Recurrence , Transplantation Conditioning/methods , Treatment Outcome , Graft vs Host Disease/etiology , Graft vs Host Disease/epidemiology
7.
BMC Med Res Methodol ; 24(1): 112, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734644

Orphan diseases, exemplified by T-cell prolymphocytic leukemia, present inherent challenges due to limited data availability and complexities in effective care. This study delves into harnessing the potential of machine learning to enhance care strategies for orphan diseases, specifically focusing on allogeneic hematopoietic cell transplantation (allo-HCT) in T-cell prolymphocytic leukemia. The investigation evaluates how varying numbers of variables impact model performance, considering the rarity of the disease. Utilizing data from the Center for International Blood and Marrow Transplant Research, the study scrutinizes outcomes following allo-HCT for T-cell prolymphocytic leukemia. Diverse machine learning models were developed to forecast acute graft-versus-host disease (aGvHD) occurrence and its distinct grades post-allo-HCT. Assessment of model performance relied on balanced accuracy, F1 score, and ROC AUC metrics. The findings highlight the Linear Discriminant Analysis (LDA) classifier achieving the highest testing balanced accuracy of 0.58 in predicting aGvHD. However, challenges arose in its performance during multi-class classification tasks. While affirming the potential of machine learning in enhancing care for orphan diseases, the study underscores the impact of limited data and disease rarity on model performance.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Prolymphocytic, T-Cell , Machine Learning , Transplantation, Homologous , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Humans , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous/methods , Leukemia, Prolymphocytic, T-Cell/therapy , Leukemia, Prolymphocytic, T-Cell/diagnosis , Male , Middle Aged , Female , Adult , Acute Disease
8.
Ann Hematol ; 103(6): 2103-2111, 2024 Jun.
Article En | MEDLINE | ID: mdl-38656370

OBJECTIVE: This study aimed to investigate the prognosis of unrelated umbilical cord blood transplantation (UCBT) using low-dose anti-thymocyte globulin (ATG) in children diagnosed with severe aplastic anemia (SAA). METHODS: This retrospective case series study was conducted involving pediatric SAA patients treated at the Capital Institute of Pediatrics from January 2020 to February 2023. All patients underwent a reduced-intensity conditioning (RIC) regimen alongside low-dose ATG. RESULTS: The study comprised nine patients (five males) with a median age of 5 years (range: 1.7 to 7 years). The median follow-up duration was 799 days (range: 367 to 1481 days), during which all patients survived. The median time interval from diagnosis to transplantation was 3 months (range: 1 to 9 months). The median dosage of ATG administered was 5 mg/kg (range: 2.5 to 7.5 mg/kg). The median durations for granulocyte and platelet engraftment were 15 days (range: 12 to 23 days) and 26 days (range: 12 to 41 days), respectively. Three patients experienced grade 2-4 acute graft-versus-host disease (aGVHD). Epstein-Barr virus (EBV) reactivation was observed in three patients, while cytomegalovirus (CMV) reactivation occurred in seven patients, with no cases of CMV disease or post-transplant lymphoproliferative disorder (PTLD). One patient experienced recurrence 15 months after transplantation due to influenza A infection. CONCLUSION: These findings indicate that SAA patients may attain a favorable prognosis following UCBT with a RIC regimen combined with low-dose ATG.


Anemia, Aplastic , Antilymphocyte Serum , Cord Blood Stem Cell Transplantation , Humans , Anemia, Aplastic/therapy , Antilymphocyte Serum/administration & dosage , Antilymphocyte Serum/therapeutic use , Male , Female , Child, Preschool , Child , Retrospective Studies , Infant , Graft vs Host Disease/etiology , Transplantation Conditioning/methods , Unrelated Donors
9.
Front Immunol ; 15: 1382099, 2024.
Article En | MEDLINE | ID: mdl-38665912

Introduction: Chimerism is closely correlated with disease relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, chimerism rate is dynamic changes, and the sensitivity of different chimerism requires further research. Methods: To investigate the predictive value of distinct chimerism for relapse, we measured bone marrow (BM), peripheral blood (PB), and T-cell (isolated from BM) chimerism in 178 patients after allo-HSCT. Results: Receiver operating characteristic (ROC) curve showed that T-cell chimerism was more suitable to predict relapse after allo-HSCT compared with PB and BM chimerism. The cutoff value of T-cell chimerism for predicting relapse was 99.45%. Leukemia and myelodysplastic syndrome (MDS) relapse patients' T-cell chimerism was a gradual decline from 2 months to 9 months after allo-HSCT. Higher risk of relapse and death within 1 year after allo-HSCT. The T-cell chimerism rates in remission and relapse patients were 99.43% and 94.28% at 3 months after allo-HSCT (P = 0.009), 99.31% and 95.27% at 6 months after allo-HSCT (P = 0.013), and 99.26% and 91.32% at 9 months after allo-HSCT (P = 0.024), respectively. There was a significant difference (P = 0.036) for T-cell chimerism between early relapse (relapse within 9 months after allo-HSCT) and late relapse (relapse after 9 months after allo-HSCT) at 2 months after allo-HSCT. Every 1% increase in T-cell chimerism, the hazard ratio for disease relapse was 0.967 (95% CI: 0.948-0.987, P<0.001). Discussion: We recommend constant monitoring T-cell chimerism at 2, 3, 6, and 9 months after allo-HSCT to predict relapse.


Hematopoietic Stem Cell Transplantation , Recurrence , T-Lymphocytes , Transplantation Chimera , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Adult , Middle Aged , T-Lymphocytes/immunology , Transplantation Chimera/immunology , Adolescent , Young Adult , Child , Child, Preschool , Chimerism , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/immunology , Leukemia/therapy , Leukemia/immunology , Leukemia/mortality , Predictive Value of Tests , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology
11.
Zhonghua Er Ke Za Zhi ; 62(5): 444-450, 2024 May 02.
Article Zh | MEDLINE | ID: mdl-38623012

Objective: To evaluate the efficacy of allogeneic hematopoietic stem cell transplantation for the treatment of combined immunodeficiency (CID) and explore prognostic risk factors. Methods: In this retrospective cohort study, clinical characteristics, laboratory tests and prognosis of 73 CID children who underwent allogeneic hematopoietic stem cell transplantation from February 2014 to April 2022 in the Children's Hospital of Fudan University were analyzed. Based on the subtypes of diseases, all patients were divided into severe combined immunodeficiency disease (SCID) group and other CID group. Based on the types of donors, all patients were divided into matched sibling donor group, matched unrelated donor group, unrelated cord blood group, and haploidentical donor group. Kaplan-Meier method and Log-Rank test were used to analyze the survival data. Cox regression was used to analyze prognostic factors. Results: Among the 73 patients, there were 61 (84%) males and 12 (16%) females. Fifty-five (75%) patients were SCID, and 18 (25%) patients were other CID. Donor source included 2 (3%) matched sibling donors (MSD), 3 (4%) matched unrelated donors (MUD), 64 (88%) unrelated cord blood (UCB), and 4 (5%) haploidentical donors. The age at transplant was 10.7 (5.9, 27.5) months, and the follow-up time was 36.2 (2.5, 62.9) months. The 3-year overall survival rate of 73 patients with CID was (67±6) %. No significant difference was found in the 3-year overall survival rates between patients with SCID (55 cases) and other CID (18 cases) ((64±7) % vs. (78±10) %, χ2=1.31, P=0.252). And no significant difference was found in the 3-year overall survival rates among patients who received MSD or MUD (5 cases), UCB (64 cases), and haploidentical donor (4 cases) transplant (100% vs. (66±6)% vs. (50±25) %, χ2=2.30, P=0.317). Cox regression analysis showed that the medical history of sepsis (HR=2.55, 95%CI 1.05-6.20, P=0.039) and hypoalbuminemia at transplant (HR=2.96, 95%CI 1.14-7.68, P=0.026) were independent risk factors for the prognosis of allogeneic hematopoietic stem cell transplantation in pediatric patients with CID. Conclusions: Allogeneic hematopoietic stem cell transplantation is an effective treatment for CID. The medical history of sepsis and hypoalbuminemia at transplant were risk factors for prognosis. Enhancing infection prevention and nutritional intervention before transplant can improve patient prognosis.


Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Retrospective Studies , Male , Female , Infant , Prognosis , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/mortality , Child, Preschool , Child , Risk Factors , Survival Rate , Unrelated Donors , Treatment Outcome , Siblings , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Kaplan-Meier Estimate , Cord Blood Stem Cell Transplantation/methods
13.
Front Immunol ; 15: 1377535, 2024.
Article En | MEDLINE | ID: mdl-38601147

Introduction: We investigated the potential role of HLA molecular mismatches (MM) in achieving stable chimerism, allowing for donor-specific tolerance in patients undergoing combined living donor kidney and hematopoietic stem cell transplantation (HSCT). Methods: All patients with available DNA samples (N=32) who participated in a phase 2 clinical trial (NCT00498160) where they received an HLA mismatched co-transplantation of living donor kidney and facilitating cell-enriched HSCT were included in this study. High-resolution HLA genotyping data were used to calculate HLA amino acid mismatches (AAMM), Eplet MM, three-dimensional electrostatic mismatch scores (EMS-3D), PIRCHE scores, HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence MM, and KIR ligands MM between the donor and recipient in both directions. HLA MM were analyzed to test for correlation with the development of chimerism, graft vs. host disease (GvHD), de novo DSA, and graft rejection. Results: Follow-up time of this cohort was 6-13.5 years. Of the 32 patients, 26 developed high-level donor or mixed stable chimerism, followed by complete withdrawal of immunosuppression (IS) in 25 patients. The remaining six of the 32 patients had transient chimerism or no engraftment and were maintained on IS (On-IS). In host versus graft direction, a trend toward higher median number of HLA-DRB1 MM scores was seen in patients On-IS compared to patients with high-level donor/mixed chimerism, using any of the HLA MM modalities; however, initial statistical significance was observed only for the EMS-3D score (0.45 [IQR, 0.30-0.61] vs. 0.24 [IQR, 0.18-0.36], respectively; p=0.036), which was lost when applying the Bonferroni correction. No statistically significant differences between the two groups were observed for AAMM, EMS-3D, Eplet MM, and PIRCHE-II scores calculated in graft versus host direction. No associations were found between development of chimerism and GvHD and non-permissive HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence, and KIR ligands MM. Conclusion: Our results suggest an association between HLA-DRB1 molecular mismatches and achieving stable chimerism, particularly when electrostatic quality of the mismatch is considered. The non-permissive HLA-DPB1 T-cell epitope group, HLA-B leader sequence, and KIR ligands MM do not predict chimerism and GvHD in this combined kidney/HSCT transplant patient cohort. Further work is needed to validate our findings. Clinical trial registration: https://clinicaltrials.gov/study/NCT00498160, identifier NCT00498160.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Living Donors , Epitopes, T-Lymphocyte , HLA-DRB1 Chains , Histocompatibility Testing , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/etiology , Kidney , HLA-B Antigens
14.
Front Immunol ; 15: 1359113, 2024.
Article En | MEDLINE | ID: mdl-38571944

Acute Myeloid Leukemia (AML) is the prototype of cancer genomics as it was the first published cancer genome. Large-scale next generation/massively parallel sequencing efforts have identified recurrent alterations that inform prognosis and have guided the development of targeted therapies. Despite changes in the frontline and relapsed standard of care stemming from the success of small molecules targeting FLT3, IDH1/2, and apoptotic pathways, allogeneic stem cell transplantation (alloHSCT) and the resulting graft-versus-leukemia (GVL) effect remains the only curative path for most patients. Advances in conditioning regimens, graft-vs-host disease prophylaxis, anti-infective agents, and supportive care have made this modality feasible, reducing transplant related mortality even among patients with advanced age or medical comorbidities. As such, relapse has emerged now as the most common cause of transplant failure. Relapse may occur after alloHSCT because residual disease clones persist after transplant, and develop immune escape from GVL, or such clones may proliferate rapidly early after alloHSCT, and outpace donor immune reconstitution, leading to relapse before any GVL effect could set in. To address this issue, genomically informed therapies are increasingly being incorporated into pre-transplant conditioning, or as post-transplant maintenance or pre-emptive therapy in the setting of mixed/falling donor chimerism or persistent detectable measurable residual disease (MRD). There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect. By maximizing the synergistic action of molecularly targeted agents, immunomodulating agents, conventional chemotherapy, and the GVL effect, there is hope for improving outcomes for patients with this often-devastating disease.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/complications , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Recurrence
15.
Zhonghua Xue Ye Xue Za Zhi ; 45(2): 141-147, 2024 Feb 14.
Article Zh | MEDLINE | ID: mdl-38604790

Objectives: To assess the efficacy of cord blood-assisted haploid peripheral blood stem cell transplantation (haplo-cord-PBSCT) versus unrelated donor peripheral blood stem cell transplantation (UD-PBSCT) in the treatment of malignant hematological diseases. Methods: A retrospective analysis was performed on one hundred and four patients with malignant hematological diseases who underwent haplo-cord-PBSCT and fifty-two patients who underwent UD-PBSCT at Xiangya Hospital of Central South University between January 2016 and December 2021. Results: ①The median implantation time for neutrophils in the haplo-cord-PBSCT and UD-PBSCT groups was 13 (9-22) days and 13 (10-24) days, respectively (P=0.834), whereas the median implantation time for platelets was 15 (7-103) days and 14 (8-38) days, respectively (P=0.816). The cumulative implantation rate of neutrophils at 30 days after transplantation in the haplo-cord-PBSCT group and the UD-PBSCT group was 100% (P=0.314), and the cumulative platelet implantation rate at 100 days after transplantation was 95.2% (95% CI 88.3% - 98.1% ) and 100% (P=0.927), respectively. 30 days after transplantation, both groups of patients achieved complete donor chimerism, and no umbilical cord blood stem cells were implanted. ②The cumulative incidence rates of grade Ⅱ-Ⅳ acute GVHD within 100 days after transplantation in the haplo-cord-PBSCT group and the UD-PBSCT group were 29.1% (95% CI 20.1% -38.1% ) and 28.8% (95% CI 17.2% -41.6% (P=0.965), respectively. The cumulative incidence rates of grade Ⅲ/Ⅳ acute GVHD were 7.8% (95% CI 3.6% -14.0% ) and 9.6% (95% CI 3.5% -19.5% ) (P=0.725). The cumulative incidence rates of 2-year chronic GVHD in the haplo-cord-PBSCT group and the UD-PBSCT group were 45.3% (95% CI 36.1% -56.1% ) and 35.1% (95% CI 21.6% -44.1% ), respectively (P=0.237). The cumulative incidence rates of severe chronic GVHD at 2 years after transplantation were 13.6% (95% CI 7.6% -21.3% ) and 12.9% (95% CI 5.1% -24.3% ), respectively (P=0.840). ③The 2-year CIR after transplantation in the haplo-cord-PBSCT group and UD-PBSCT group were 12.8% (95% CI 7.0% -20.5% ) and 10.0% (95% CI 3.6% -20.2% ), respectively (P=0.341), and the NRM were 14.7% (95% CI 8.4% -22.6% ) and 16.2% (95% CI 7.4% -28.0% ), respectively (P=0.681). ④The 2-year OS rates in the haplo-cord-PBSCT and UD-PBSCT groups after transplantation were 82.2% (95% CI 74.8% -90.3% ) and 75.5% (95% CI 64.2% -88.7% ), respectively (P=0.276). The 2-year DFS rates were 69.9% (95% CI 61.2% -79.8% ) and 73.8% (95% CI 62.4% -87.3% ), respectively (P=0.551). The 2-year rates of GVHD-free/recurrence-free survival (GRFS) were 55.3% (95% CI 44.8% -64.8% ) and 64.7% (95% CI 52.8% -79.3% ), respectively (P=0.284) . Conclusion: The findings of this study indicate that haplo-cord-PBSCT and UD-PBSCT have comparable efficacy and safety in the treatment of malignant hematological diseases and can be used as an alternative treatment options.


Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Peripheral Blood Stem Cell Transplantation , Humans , Peripheral Blood Stem Cell Transplantation/adverse effects , Unrelated Donors , Fetal Blood , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Hematologic Neoplasms/therapy , Hematologic Neoplasms/complications , Graft vs Host Disease/etiology , Cord Blood Stem Cell Transplantation/adverse effects
16.
Zhonghua Xue Ye Xue Za Zhi ; 45(2): 128-133, 2024 Feb 14.
Article Zh | MEDLINE | ID: mdl-38604788

Objective: To investigate and verify a novel acute graft versus host disease (aGVHD) prevention protocol in the context of haploidentical hematopoietic stem cell transplantation (haplo-HSCT) . Methods: Patients who underwent haplo-HSCT in our center between January 2022 and December 2022 were included. All patients received reduced doses of cyclophosphamide, Rabbit anti-human tymoglobulin, ruxolitinib, methotrexate, cyclosporine, and MMF to prevent aGVHD. The transplantation outcomes, complications, and survival rate of all patients were investigated. Results: A total of 52 patients with haplo-HSCT were enrolled, 29 (55.8%) male and 23 (44.2%) female, with a median age of 28 (5-59) years. There were 25 cases of acute myeloid leukemia, 17 cases of acute lymphocyte leukemia, 6 cases of myelodysplastic syndrome, 2 cases of chronic myeloid leukemia and 2 cases of myeloproliferative neoplasms. 98.1% of patients had successful engraftment. The incidence of Ⅱ-Ⅳ aGVHD and Ⅲ-Ⅳ aGVHD was 19.2% (95% CI 8.2% -30.3% ) and 7.7% (95% CI 0.2% -15.2% ), respectively. No patients experienced severe gastrointestinal mucositis. The Epstein-Barr virus and CMV reactivation rates were 40.4% and 21.3%, respectively. 9.6% of patients relapsed during followup, with 1-year overall survival, progression-free survival, and non-relapse mortality rates of 86.5% (95% CI 76.9% -96.1% ), 78.8% (95% CI 67.4% -90.3% ) and 11.5% (95% CI 2.6% -20.5% ), respectively. Conclusion: Ruxolitinib combined with a low dose of PTCY is a safe and effective first-line aGVHD prevention strategy.


Epstein-Barr Virus Infections , Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Nitriles , Pyrazoles , Pyrimidines , Humans , Male , Female , Rabbits , Animals , Adult , Middle Aged , Transplantation, Haploidentical/adverse effects , Epstein-Barr Virus Infections/complications , Hematologic Neoplasms/complications , Transplantation Conditioning/adverse effects , Transplantation Conditioning/methods , Herpesvirus 4, Human , Cyclophosphamide , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Retrospective Studies
17.
Clin Transplant ; 38(4): e15313, 2024 04.
Article En | MEDLINE | ID: mdl-38581299

BACKGROUND: The number of CD34+ cells in the graft is generally associated with time to engraftment and survival in transplantation using cord blood or allogeneic peripheral blood stem cells. However, the significance of abundant CD34+ in bone marrow transplantation (BMT) remained unclear. METHODS: We retrospectively reviewed 207 consecutive adult patients who underwent their first BMT at Jichi Medical University between January 2009 and June 2021. RESULTS: The median nucleated cell count (NCC) and CD34+ cell dose were 2.17 × 108/kg (range .56-8.52) and 1.75 × 106/kg (.21-5.84), respectively. Compared with 104 patients in the low CD34+ group (below the median), 103 patients in the high CD34+ group (above the median) showed faster engraftment at day +28 in terms of neutrophil (84.6% vs. 94.2%; p =  .001), reticulocyte (51.5% vs. 79.6%; p < .001), and platelet (39.4% vs. 72.8%; p < .001). There were no significant differences in overall survival, relapse, nonrelapse mortality, acute or chronic graft-versus-host disease, or infectious complications between the two groups in univariate and multivariate analyses. Low or high NCC had no significant effect on overall survival, nonrelapse mortality, cumulative incidence of relapse and graft-versus-host disease, either. While a positive correlation was observed between NCC and the CD34+ cell dose, a high CD34+ cell dose was associated with rapid hematopoietic recovery, even in patients with NCC below the median. CONCLUSION: Measurement of CD34+ cell dose in addition to NCC was useful for predicting hematopoietic recovery, but seemed to have little influence on the long-term outcome in BMT.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adult , Humans , Bone Marrow Transplantation/adverse effects , Retrospective Studies , Antigens, CD34 , Recurrence , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects
18.
Hematol Oncol Stem Cell Ther ; 17(2): 110-119, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38560973

BACKGROUND AND OBJECTIVES: Prognostic factors reliably predicting outcomes for critically ill adolescent and young adult (AYA) patients undergoing allogeneic hematopoietic cell transplantation (allo-HSCT) are lacking. We assessed transplant and intensive care unit (ICU)-related factors impacting patient outcomes. PATIENTS AND METHODS: AYA patients who underwent allo-HSCT and required ICU admission at a Tertiary care Centre, during the period of 2003-2013, were included in this retrospective review. This was a non-interventional study. Only outcomes after the first allo-HSCT and index ICU admissions were analyzed. Disease-, transplant-, and ICU-related variables were analyzed to identify risk factors predictive of survival. RESULTS: Overall, 152 patients were included (males, 60.5%); median age at transplantation was 24 years (interquartile range [IQR] 18-32.5); median age at admission to the ICU was 25.8 years (IQR 19-34). Eighty-four percent underwent transplantation for a hematological malignancy; 129 (85%) received myeloablative conditioning. Seventy-one percent of ICU admissions occurred within the first year after allo-HSCT. ICU admission was primarily due to respiratory failure (47.3%) and sepsis (43.4%). One hundred and three patients (68%) died within 28 days of ICU admission. The 1- and 5-year overall survival rates were 19% and 17%, respectively. Main causes for ICU-related death were refractory septic shock with multiorgan failure (n = 49, 32%) and acute respiratory distress syndrome (ARDS) (n = 39, 26%). Univariate analysis showed that ICU mortality was associated with an Acute Physiology and Chronic Health Evaluation (APACHE) II score >20, a sequential organ failure assessment (SOFA score) > 12, a high lactate level, anemia, thrombocytopenia, leukopenia, hyperbilirubinemia, a high international normalized ratio (INR) and acute graft-versus-host disease (GVHD). Multivariate analysis identified thrombocytopenia, high INR, and acute GVHD as independent predictors of mortality. CONCLUSIONS: In AYA allo-HSCT patients admitted to the ICU, mortality remains high. Higher SOFA and APACHE scores, the need for organ support, thrombocytopenia, coagulopathy, and acute GVHD predict poor outcomes.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Thrombocytopenia , Male , Humans , Adolescent , Young Adult , Adult , Critical Care , Intensive Care Units , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Thrombocytopenia/etiology
19.
J Hematol Oncol ; 17(1): 24, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38679709

Although killer Ig-like receptor ligands (KIR-L) mismatch has been associated with alloreactive natural killer cell activity and potent graft-versus-leukemia (GVL) effect among adults with acute myeloid leukemia (AML), its role among children with AML receiving cord blood transplantation (CBT) has not been determined. We conducted a retrospective study using a nationwide registry of the Japanese Society for Transplantation and Cellular Therapy. Patients who were diagnosed with de novo non-M3 AML and who underwent their first CBT in remission between 2000 and 2021 at under 16 years old were included. A total of 299 patients were included; 238 patients were in the KIR-L match group, and 61 patients were in the KIR-L mismatch group. The cumulative incidence rates of neutrophil recovery, platelet engraftment, and acute/chronic graft-versus-host disease did not differ significantly between the groups. The 5-year event-free survival (EFS) rate was 69.8% in the KIR-L match group and 74.0% in the KIR-L mismatch group (p = 0.490). Stratification by CD34 + cell dose into four groups revealed a significant correlation between CD34 + cell dose and EFS in the KIR-L mismatch group (p = 0.006) but not in the KIR-L match group (p = 0.325). According to our multivariate analysis, KIR-L mismatch with a high CD34 + cell dose (≥ median dose) was identified as an independent favorable prognostic factor for EFS (hazard ratio = 0.19, p = 0.029) and for the cumulative incidence of relapse (hazard ratio = 0.09, p = 0.021). Our results suggested that higher CD34 + cell doses are crucial for achieving a potent GVL effect in the context of KIR-L-mismatched CBT.


Antigens, CD34 , Cord Blood Stem Cell Transplantation , Leukemia, Myeloid, Acute , Receptors, KIR , Humans , Cord Blood Stem Cell Transplantation/methods , Child , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Female , Child, Preschool , Male , Retrospective Studies , Adolescent , Antigens, CD34/analysis , Infant , Graft vs Host Disease/etiology
20.
Rinsho Ketsueki ; 65(4): 265-271, 2024.
Article Ja | MEDLINE | ID: mdl-38684437

Hematopoietic cell transplantation (HCT) is considered a curative treatment for hematological malignancies. However, HCT recipients often face complications such as graft-versus-host disease (GVHD) and disease relapse. Clinical factors like age and HLA disparity are recognized as risks for GVHD. Notably, sex-mismatched HCT, particularly with female donors and male recipients (F→M), is reported to increase the risk of chronic GVHD. This adverse effect of F→M HCT is thought to result from allogeneic immune response against minor histocompatibility antigens encoded on the Y-chromosome of a male recipient (HY-antigens). Indeed, antibodies against HY-antigens (HY-Abs) were detected three months after F→M HCT, and the cumulative number of HY-Abs was significantly associated with increased risks of chronic GVHD and non-relapse mortality. This review focuses on F→M HCT, shedding light on its impact in several clinical settings and presenting clinical evidence of its allogeneic response, encompassing GVHD and graft-versus-leukemia (GVL) effects. Additionally, potential clinical options to mitigate adverse effects in F→M HCT will be discussed. Further investigation is required to improve clinical outcomes and understand allogenic immunological reconstitution after F→M HCT.


Graft vs Host Disease , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Tissue Donors , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology , Graft vs Leukemia Effect/immunology , Female , Male
...